Lessons in Units

CCSS UnitsShould you buy a camera lens with vibration reduction? Students interpret graphs and use right triangle trigonometry to explore the relationship between focal length, viewing angle, and blurriness.

When is it worth buying a Powerball ticket? Students count combinations and apply basic rules of probability and expected value to determine when the Powerball jackpot is large enough to justify the cost of playing the game.

How much should people pay for cable? Students interpret scatterplots and calculate the costs and revenues for consumers and providers under both the bundled and à la carte pricing schemes to determine which would be better for U.S. companies and customers.

How accurate are police speed guns? Students use rates and the Pythagorean Theorem to examine the accuracy of LiDAR guns used to catch speeding drivers.

How does two people's love for one another change over time? Students investigate the effect of coefficients on recursive functions, and explore whether or not romance can be modeled with mathematics.

How much should theaters charge for movie tickets? Students apply operations on whole numbers to figure out how much money theaters could make by charging different ticket prices, and come up with strategies theaters might use to earn more from people willing to pay more.

How many people should you date before you settle down? Students use modeling with probability distributions to come up with a rule to try to maximize their relationship happiness.

How has the length of popular movies changed over time? Students use scatterplots to examine linear and nonlinear patterns in data and make predictions about the future.

What’s the best strategy for creating a March Madness bracket? Students use probability to discover that it’s basically impossible to correctly predict every game in the tournament. Nevertheless, that doesn’t stop people from trying.

How can we improve our calendar? Students examine some other ways to keep track of dates, and use number sense and function concepts to convert between different calendars.

Can you predict a country's Winter Olympic performance? Students analyze scatterplots and correlation coefficients to pick out the best predictive model for Olympic success.

What are some ways to encrypt secret messages? Students explore function concepts using ciphers to encrypt messages both graphically and algebraically; they try to decrypt some messages too. In the end, they’ll learn what makes for a useful cipher, and what makes a cipher impossible to decode.

How do you determine the best scorer in basketball? Students compare LeBron James and Tyson Chandler in various ways, from total points, to points per game/minute, to a new measure called *net points* in order to decide.

Should stores open on Thanksgiving Day? Students use game theory, payoff matrices, and the famous Prisoner's Dilemma to explore why stores keep opening earlier and earlier. And earlier.

How much should vowels cost on *Wheel of Fortune*? Students use ratios and percents to explore what would happen if *Wheel of Fortune* charged prices for vowels based on how often they come up.