Lessons in Units

CCSS UnitsHow should Arlington National Cemetery plan for its future? Students write and solve linear equations to estimate when Arlington National Cemetery will reach capacity, evaluate various proposals to prolong its lifespan, and debate the best way for Arlington to honor soldiers and their families.

Could Inspector Javert have survived the fall? Students use quadratic models to determine how high the bridge was in *Les Misérables*, and explore the maximum height from which someone can safely jump.

How do you create simple video games? Students apply geometric transformations to build (and play) their own games.

How much is Domino’s really charging for pizza? Students use slope, y-intercept, and linear equations to explore the costs of different-sized pizzas at Domino’s and debate whether the pizza chain should be more transparent in its pricing.

How have video game consoles changed over time? Students create exponential models to predict the speed of video game processors over time, compare their predictions to observed speeds, and consider the consequences as digital simulations become increasingly lifelike.

Do taller sprinters have an unfair advantage? Students use proportions to find out what would happen if Olympic races were organized by height.

In basketball, should you ever foul at the buzzer? Students use probabilities to determine when the defense should foul...and when they should *not*.

Who should buy health insurance? Students use percents and expected value to explore the mathematics of health insurance from a variety of perspectives.